The performance of corporate financial distress prediction models with features selection guided by domain knowledge and data mining approaches

نویسندگان

  • Ligang Zhou
  • Dong Lu
  • Hamido Fujita
چکیده

Experts in finance and accounting select feature subset for corporate financial distress prediction according to their professional understanding of the characteristics of the features, while researchers in data mining often believe that data alone can tell everything and they use various mining techniques to search the feature subset without considering the financial and accounting meanings of the features. This paper investigates the performance of different financial distress prediction models with features selection approaches based on domain knowledge or data mining techniques. The empirical results show that there is no significant difference between the best classification performance of models with features selection guided by data mining techniques and that by domain knowledge. However, the combination of domain knowledge and genetic algorithm based features selection method can outperform unique domain knowledge and unique data mining based features selection method on AUC performance. 2015 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applying Combined Approach of Sequential Floating Forward Selection and Support Vector Machine to Predict Financial Distress of Listed Companies in Tehran Stock Exchange Market

Objective: Nowadays, financial distress prediction is one of the most important research issues in the field of risk management that has always been interesting to banks, companies, corporations, managers and investors. The main objective of this study is to develop a high performance predictive model and to compare the results with other commonly used models in financial distress prediction M...

متن کامل

Predicting Bankruptcy of Companies using Data Mining Models and Comparing the Results with Z Altman Model

One of the issues helping make investment decisions is appropriate tools and models to evaluate financial situation 0f the organization.  By means of these tools, investors can analyze financial situation of the organization and identify financial distress or an ideal condition, they become aware of making decisions to invest in appropriate conditions.  The main objective of this study is to ev...

متن کامل

The effect of feature selection on financial distress prediction

Financial distress prediction is always important for financial institutions in order for them to assess the financial health of enterprises and individuals. Bankruptcy prediction and credit scoring are two important issues in financial distress prediction where various statistical and machine learning techniques have been employed to develop financial prediction models. Since there are no gene...

متن کامل

Stock Market Modeling Using Artificial Neural Network and Comparison with Classical Linear Models

Stock market plays an important role in the world economy. Stock market customers are interested in predicting the stock market general index price, since their income depends on this financial factor; Therefore, a reliable forecast in stock market can be extremely profitable for stockholders. Stock market prediction for financial markets has been one of the main challenges in forecasting finan...

متن کامل

Developing Financial Distress Prediction Models Using Cutting Edge Recursive Partitioning Techniques: A Study of Australian Mining Performance

The purpose of this paper is to analyze financial ratios of Australian Mining companies in order to specify and quantify the variables which are effective indicators and predictors of corporate distress. Using financial ratios, the paper explores the quantifiable characteristics of potential bankrupts using cutting edge Recursive Partitioning techniques like Discriminant Analysis, Decision Tree...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Knowl.-Based Syst.

دوره 85  شماره 

صفحات  -

تاریخ انتشار 2015